Part Number Hot Search : 
4815D 74HCT5 IDTQS3 3WA510M 27M2I 2SC5289 T3043 A170D
Product Description
Full Text Search
 

To Download XE88LC01RI000 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet XE88LC01 Data Acquisition Microcontroller
XE88LC01 Sensing Machine
16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
General Description
The XE88LC01 is an ultra low-power microcontroller unit (MCU) associated with a versatile analog-to-digital converter (ADC) including a programmable offset and gain pre-amplifier (PGA) . XE88LC01 is available with on chip Multiple-Time-Programmable (MTP) Flash program memory and ROM.
Key product Features
* Low-power, high resolution ZoomingADC
* * * 0.5 to 1000 gain with offset cancellation up to 16 bits ADC up to 13 input multiplexer 2 MIPS at 2.4 V to 5.5 V supply voltage 300 A at 1 MIPS, 2.4 V to 5.5 V supply
* * * * *
Low-voltage low-power controller operation
* *
Applications
* * * * * Internet connected appliances Portable, battery operated instruments Piezoresistive bridge sensors HVAC control Motor control
22 kByte (8 kInstruction) MTP, 520 Byte RAM RC and crystal oscillators 5 reset, 18 interrupt, 8 event sources 100 years MTP Flash retention at 55C
Ordering Information
Reference
XE88LC01MI000 XE88LC01MI027 XE88LC01MI032 XE88LC01RI000 XE88LC01RI027
Memory type Temperature
MTP Flash MTP Flash MTP Flash ROM ROM -40C to 85C -40C to 85C -40C to 85C -40C to 125C -40C to 125C
Package
die LQFP44 PLL-44L die LQFP44
Cool Solutions for Wireless Connectivity
XEMICS SA, email: info@xemics.com web: www.xemics.com
Cool Solutions for Wireless Connectivity
XEMICS SA, email: info@xemics.com web: www.xemics.com
Data Sheet XE88LC01 Data Acquisition Microcontroller
1 Detailed Pin Description
42 40 38 36 34 32 31 30 29 28 27 26 25 24 14 16 18 20 22
packaging date
1 2 3 4 5
N9K1444 9920
XE88LC01MI
XEMICS
production lot identification
6 7 8 9 10 12
device type
Figure 1.1:
Pinout of the XE88LC01 in LQFP44 package
Pin Position in TQFP44
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Function name
PA(5) PA(6) PA(7) PC(0) PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PB(0) PB(1) PB(2) PB(3) PB(4) PB(5) PB(6) PB(7) VPP/TEST AC_R(3) AC_R(2) AC_A(7) AC_A(6) AC_A(5) AC_A(4)
Second function name
Type
Input Input Input Input/Output Input/Output Input/Output Input/Output Input/Output Input/Output Input/Output Input/Output
Description
Input of Port A Input of Port A Input of Port A Input-Output of Port C Input-Output of Port C Input-Output of Port C Input-Output of Port C Input-Output of Port C Input-Output of Port C Input-Output of Port C Input-Output of Port C Input-Output-Analog of Port B/ Data output for test and MTP programing/ PWM output Input-Output-Analog of Port B/ PWM output Input-Output-Analog of Port B Input-Output-Analog of Port B, Output pin of USRT Input-Output-Analog of Port B/ Clock pin of USRT Input-Output-Analog of Port B/ Data input or input-output pin of USRT Input-Output-Analog of Port B/ Emission pin of UART Input-Output-Analog of Port B/ Reception pin of UART Test mode/High voltage for MTP programing Highest potential node for 2nd reference of ADC Lowest potential node for 2nd reference of ADC ADC input node ADC input node ADC input node ADC input node
testout
Input/Output/Analog Input/Output/Analog Input/Output/Analog
SOU SCL SIN Tx Rx Vhigh
Input/Output/Analog Input/Output/Analog Input/Output/Analog Input/Output/Analog Input/Output/Analog Special Analog Analog Analog Analog Analog Analog
Table 1.1:
Pin-out of the XE88LC01 in LQFP44 (see Table "IO pins performances" on page 18 for drive capabilities of the pins)
3
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
Pin Position in TQFP44
27 28 29 30 31 32 33 34 35 36 37 38 39 40
Function name
AC_A(3) AC_A(2) AC_A(1) AC_A(0) AC_R(1) AC_R(0) VSS Vbat Vreg RESET Vmult OscIn OscOut PA(0)
Second function name
Type
Analog Analog Analog Analog Analog Analog Power Power Analog Input Analog
Description
ADC input node ADC input node ADC input node ADC input node Highest potential node for 1st reference of ADC Lowest potential node for 1st reference of ADC Negative power supply, connected to substrate Positive power supply Regulated supply Reset pin (active high) Pad for optional voltage multiplier capacitor Connection to Xtal/ CoolRISC clock for test and MTP programing Connection to Xtal/ Peripheral clock for test and MTP programing Input of Port A/ Data input for test and MTP programing/ Counter A input Input of Port A/ Data clock for test and MTP programing/ Counter B input Input of Port A/ Counter C input/ Counter capture input Input of Port A/ Counter D input/ Counter capture input Input of Port A
ck_cr ptck testin
Analog/Input Analog/Input Input
41 42 43 44
PA(1) PA(2) PA(3) PA(4)
testck
Input Input Input Input
Table 1.1:
Pin-out of the XE88LC01 in LQFP44 (see Table "IO pins performances" on page 18 for drive capabilities of the pins)
4
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
2 Absolute maximum ratings
Stresses beyond these listed in this chapter may cause permanent damage to the device. No functional operation is implied at or beyond these conditions. Exposure to these conditions for an extended period may affect the device reliability.
Parameter
VBAT with respect to VSS Input voltage on any input pin Storage temperature Storage temperature for programmed MTP devices
Valeue
-0.3V to 6.0V VSS-0.3V to VBAT+0.3V -55C to 125C -40C to 85C
Table 2.1:
Absolute maximum ratings These devices are ESD sensitive. Although these devices feature proprietary ESD protection structures, permanent damage may occur on devices subjected to high energy electrostatic discharges. Proper ESD precautions have to be taken to avoid performance degradation or loss of functionality.
5
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
3 Electrical Characteristics
All specification are -40C to 85C unless otherwise noted. ROM operates up to 125C.
Operation conditions
Power supply Operating speed Instruction cycle ROM version MTP version 2.4 V to 5.5 V any instruction CPU running at 1 MIPS CPU running at 32 kHz on Xtal, RC off CPU halt, timer on Xtal, RC off CPU halt, timer on Xtal, RC ready CPU halt, Xtal off timer on RC at 100 kHz CPU halt, ADC 16 bits at 4 kHz CPU halt, ADC 12 bits at 4 kHz, PGA gain 100 CPU at 1 MIPS, ADC 12 bits at 4 kHz CPU at 1 MIPS, ADC 12 bits at 4 kHz, PGA gain 10 CPU at 1 MIPS, ADC 12 bits at 4 kHz, PGA gain 100 CPU at 1 MIPS, ADC 12 bits at 4 kHz, PGA gain 1000 Voltage level detection Prog. voltage Erase time Write/Erase cycles Data retention
min
2.4 2.4 0.032
typ
max
5.5 5.5 2
Unit
V V MHz ns uA
Remarks
500 310
7 1
10
uA
1
Current requirement
1
uA
1
1.7
uA
1
1.4
uA
1
190
uA
4,6
460
uA
4,6
670
uA
3,4,6
Current requirement
790
uA
3,4,6
940
uA
3,4,6
1100 15 10.8 1 100
uA uA V s years years
3,4,6
MTP Flash memory
10.3 0.2 10 10 100
8 5 85C, 2 55C, 2
Table 3.1: Note:
Specifications and current requirement of the XE88LC01 1) Power supply: 2.4 V - 5.5 V, temperature is 27C. 2) < 10 erase cycles. 3) Output not loaded. 4) Current requirement can be divided by a factor of 2 or 4 by reducing the speed accordingly. 5) More cycles possible during development, with restraint retention 6) Power supply: 3.0V, at 27C; see chapter Power Consumption on page 30 for variation of current with voltage and clock speed variation 7) With 2 MHz clock, all instructions are using exactly 1 clock cycle 8) Longer erase time may degrade retention
6
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
4 CPU
The XE88LC01 CPU is a low power RISC core. It has 16 internal registers for efficient implementation of the C compiler. Its instruction set is made of 35 generic instructions, all coded on 22 bits, with 8 addressing modes. All instructions are executed in one clock cycle, including conditional jumps and 8x8 multiplication.
A complete tool suite for development is available from XEMICS, including programmer, Ccompiler, assembler, simulator, linker, all integrated in a modern and efficient graphical user interface.
7
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
5 Memory organisation
The CPU uses a Harvard architecture, so that memory is organised in two separated fields: program memory and data memory. As both memory are separated, the central processing unit can read/write data at the same time it loads an instruction. Peripherals and system control registers are mapped on data memory space.
Program memory is fitted onto one page. Data is made of several 256 bytes pages.
0h1FFF / 01hBFF Program address bus Data address bus 0h027F RAM 512 Bytes 0h0080 Peripherals Instruction pipeline 22 bits wide Figure 5.1: Memory organization CPU registers 0h0010 LP RAM 8 bits wide 0h0000
Program memory 8k instructions MTP or 6k instructions ROM
CPU
0h0000
5.1 Program memory
The program memory is implemented as Multiple Time Programmable (MTP) Flash memory. The power consumption of MTP memory is linear with the access frequency (no significant static current).
Size of the MTP Flash memory is 8192 x 22 bits (= 22 kBytes) Size of the ROM memory is 6144 x 22 bits (= 17 kBytes)
block
MTP ROM
size
8192 x 22 6144 x 22
address
H0000 - H1FFF H0000 - H1BFF
Table 5.1:
Program addresses for MTP or ROM memory
8
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
5.2 Data memory
The data memory is implemented as static Random-Access Memory (RAM). The RAM size is 512 x 8 bits plus 8 low power RAM bytes that require very low current when addressed. Programs using the low-power RAM instead of RAM will use even less current.
block
LP RAM RAM
size
8x8 512 x 8
address
H0000 - H0007 H0080 - H027F
Table 5.2:
RAM addresses
6
Registers list
Left column include register name and address. Right columns include bit name, access (r: read, r0: always 0 when read, w: write, c: cleared by writing any value, c1: cleared by writing 1), and reset status (0 or 1) and signal. Empty bits are reserved for future use and should not be written, neither should their read value be used for any purpose as it may change without notice.
6.1 Peripherals mapping
block
LP RAM System control Port A Port B Port C Reserved MTP Event Interrupts control reserved UART Counters Zooming ADC Reserved Reserved Other (VLD) RAM1 RAM2 RAM3
size
8x8 16x8 8x8 8x8 4x8 4x8 4x8 4x8 8x8 8x8 8x8 8x8 8x8 12x8 8x8 4x8 128x8 256x8 128x8
address
H0000-H0007 H0010-H001F H0020-H0027 H0028-H002F H0030-H0033 H0034-H0037 H0038-H003B H003C-H003F H0040-H0047 H0048-H004F H0050-H0057 H0058-H005F H0060-H0067 H0068-H0073 H0074-H007B H007C-H007F H0080 - H00FF H0100 - H01FF H0200 - H027F
Page
Page 0
Page 1 Page 2
Table 6.1:
Peripherals addresses
9
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
6.2
Resets
The reset source name is simplified in the following registers description. Name mapping is in the next table.
reset source
resetsystem resetSynch resetPOR resetCold resetPad resetPconf resetSleep
name in this document
global
cold pconf sleep
Table 6.2:
Reset signal name mapping
6.3
Low power RAM
Low power RAM is a small additionnal RAM area with extremely low power requirement.
7 6 5 4 3 2 1 0
Name Address h0000 h0001 h0002 h0003 h0004 h0005 h0006 h0007
rw rw rw rw rw rw rw rw
rw rw rw rw rw rw rw rw
rw rw rw rw rw rw rw rw
rw rw rw rw rw rw rw rw
rw rw rw rw rw rw rw rw
rw rw rw rw rw rw rw rw
rw rw rw rw rw rw rw rw
rw rw rw rw rw rw rw rw
Table 6.3:
Low power RAM
10
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
6.4
System, oscillators, prescaler and watchdog
7
SleepEn rw, 0 por Sleep w, 0 cold CpuSel rw, 0 sleep
Name Address
RegSysCtrl
6
5
4
EnResWD rw, 0 cold ResWD rc, 0 cold BiasRC rw, 1 cold
3
2
1
0
EnRes-PConf EnBus-Error rw, 0 cold ResPor r, 0 ExtClk r, 0 cold rw, 0 cold ResBus-Error rc, 0 cold EnExtClk rw, 0 cold
h0010, type 1
RegSysReset
h0011, type 1
RegSysClock
ResPortA rc, 0 cold ColdXtal r, 1 sleep RCOnPA0 rw, 0 sleep
ResPad-Deb rc, 0 cold ColdRC r, 1 sleep DebFast rw, 0 sleep
ResPad rc, 0 cold EnableXtal rw, 0 sleep OutputCkXtal rw, 0 sleep EnableRC rw, 1 sleep OutputCkCPU rw, 0 sleep
h0012, type 1
RegSysMisc
h0013, type 1
RegSysWD
h0014
RegSysPre0
WatchDog(3) WatchDog(2) WatchDog(1) WatchDog(0) special special special special ResPre ClearLowPrescal (*) w, 0 cold RCFreqRange rw, 0 cold RCFreqFine(5) rw, 1 cold RCFreqFine(4) rw, 0 cold RCFreqCoarse(3) rw, 0 cold RCFreqFine(3) rw, 0 cold RCFreqCoarse(2) rw, 0 cold RCFreqFine(2) rw, 0 cold RCFreqCoarse(1) rw, 0 cold RCFreqFine(1) rw, 0 cold RCFreqCoarse(0) rw, 0 cold RCFreqFine(0) rw, 0 cold
h0015
RegSysRCTrim1
h001B
RegSysRCTrim2
h001C
Table 6.4:
System control registers
6.5
PortA
7
PAIn(7) r PADeb(7) rw, 0 pconf PAEdge(7) rw, 0 global rw, 0 pconf PARes0(7) rw, 0 global PARes1(7) rw, 0 global
Name Address
RegPAIn
6
RegPAIn(6) r PADeb(6) rw, 0 pconf PAEdge(6) rw, 0 global rw, 0 pconf PARes0(6) rw, 0 global PARes1(6) rw, 0 global
5
PAIn(5) r PADeb(5) rw, 0 pconf PAEdge(5) rw, 0 global rw, 0 pconf PARes0(5) rw, 0 global PARes1(5) rw, 0 global
4
PAIn(4) r PADeb(4) rw, 0 pconf PAEdge(4) rw, 0 global rw, 0 pconf PARes0(4) rw, 0 global PARes1(4) rw, 0 global
3
PAIn(3) r PADeb(3) rw, 0 pconf PAEdge(3) rw, 0 global rw, 0 pconf PARes0(3) rw, 0 global PARes1(3) rw, 0 global
2
PAIn(2) r PADeb(2) rw, 0 pconf PAEdge(2) rw, 0 global rw, 0 pconf PARes0(2) rw, 0 global PARes1(2) rw, 0 global
1
PAIn(1) r PADeb(1) rw, 0 pconf PAEdge(1) rw, 0 global rw, 0 pconf PARes0(1) rw, 0 global PARes1(1) rw, 0 global
0
PAIn(0) r PADeb(0) rw, 0 pconf PAEdge(0) rw, 0 global rw, 0 pconf PARes0(0) rw, 0 global PARes1(0) rw, 0 global
h0020
RegPADebounce
h0021
RegPAEdge
h0022
RegPAPullup
PAPullUp(7) PAPullUp(6) PAPullUp(5) PAPullUp(4) PAPullUp(3) PAPullUp(2) PAPullUp(1) PAPullUp(0)
h0023, type 1
RegPARes0
h0024
RegPARes1
h0025
Table 6.5:
Port A registers
11
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
6.6
PortB
7
PBOut(7) rw, 0 pconf RegPBIn PBIn(7) r RegPBDir PBDir(7) rw, 0 pconf PBOpen(7) rw, 0 pconf rw, 0 pconf
Name Address
RegPBOut
6
PBOut(6) rw, 0 pconf PBIn(6) r PBDir(6) rw, 0 pconf PBOpen(6) rw, 0 pconf rw, 0 pconf
5
PBOut(5) rw, 0 pconf PBIn(5) r PBDir(5) rw, 0 pconf PBOpen(5) rw, 0 pconf rw, 0 pconf
4
PBOut(4) rw, 0 pconf PBIn(4) r PBDir(4) rw, 0 pconf PBOpen(4) rw, 0 pconf rw, 0 pconf
3
PBOut(3) rw, 0 pconf PBIn(3) r PBDir(3) rw, 0 pconf PBOpen(3) rw, 0 pconf rw, 0 pconf PBAna(3) rw, 0 pconf
2
PBOut(2) rw, 0 pconf PBIn(2) r PBDir(2) rw, 0 pconf PBOpen(2) rw, 0 pconf rw, 0 pconf PBAna(2) rw, 0 pconf
1
PBOut(1) rw, 0 pconf PBIn(1) r PBDir(1) rw, 0 pconf PBOpen(1) rw, 0 pconf rw, 0 pconf PBAna(1) rw, 0 pconf
0
PBOut(0) rw, 0 pconf PBIn(0) r PBDir(0) rw, 0 pconf PBOpen(0) rw, 0 pconf rw, 0 pconf PBAna(0) rw, 0 pconf
h0028 h0029 h002A
RegPBOpen
h002B
RegPBPullup
PBPullUp(7) PBPullUp(6) PBPullUp(5) PBPullUp(4) PBPullUp(3) PBPullUp(2) PBPullUp(1) PBPullUp(0)
h002C
RegPBAna
h002D
Table 6.6:
Port B registers
6.7
PortC
7
PCOut(7) rw, 0 pconf PCIn(7) r RegPCDir PCDir(7) rw, 0 pconf
Name Address
RegPCOut
6
PCOut(6) rw, 0 pconf PCIn(6) r PCDir(6) rw, 0 pconf
5
PCOut(5) rw, 0 pconf PCIn(5) r PCDir) rw, 0 pconf
4
PCOut(4) rw, 0 pconf PCIn(4) r PCDir(4) rw, 0 pconf
3
PCOut(3) rw, 0 pconf PCIn(3) r PCDir(3) rw, 0 pconf
2
PCOut(2) rw, 0 pconf PCIn(2) r PCDir(2) rw, 0 pconf
1
PCOut(1) rw, 0 pconf PCIn(1) r PCDir(1) rw, 0 pconf
0
PCOut(0) rw, 0 pconf PCIn(0) r PCDir(0) rw, 0 pconf
h0030
RegPCIn
h0031 h0032
Table 6.7:
Port C registers
6.8
MTP
7 6 5 4 3 2 1 0
Name Address
RegEEP
h0038
RegEEP1
rw rw RegEEP2 special special
rw rw special special
rw rw special special
rw rw special special
rw rw special special
rw rw special special
rw rw special special
rw rw special special
h0039 h003A
RegEEP3
h003B
Table 6.8:
MTP control registers
12
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
6.9
Events
7
EvnCntA rc1, 0 global EvnEnCntA rw, 0 global r,1 global
Name Address
RegEvn
6
EvnCntC rc1, 0 global EvnEnCntC rw, 0 global r,1 global
5
EvnPre1 rc1, 0 global EvnEnPre1 rw, 0 global r,1 global
4
EvnPA(1) rc1, 0 global EvnEnPA(1) rw, 0 global r,1 global
3
EvnCntB rc1, 0 global EvnEnCntB rw, 0 global r,1 global
2
EvnCntD rc1, 0 global EvnEnCntD rw, 0 global r,1 global
1
EvnPre2 rc1, 0 global EvnEnPre2 rw, 0 global r,1 global EvnHigh r, 0 global
0
EvnPA(0) rc1, 0 global EvnEnPA(0) rw, 0 global r,1 global EvnLow r, 0 global
h003C
RegEvnEn
h003D
RegEvnPriority
EvnPriority(7) EvnPriority(6) EvnPriority(5) EvnPriority(4) EvnPriority(3) EvnPriority(2) EvnPriority(1) EvnPriority(0)
h003E
RegEvnEvn
h003F
Table 6.9:
Events control registers
6.10
Interrupts
7
IrqAc rc1, 0 global
Name Address
RegIrqHig
6
IrqPre1 rc1, 0 global
5
4
IrqCntA rc1, 0 global
3
IrqCntC rc1, 0 global IrqPre2 rc1, 0 global IrqPA(3) rc1, 0 global IrqEnCntC rw, 0 global IrqEnPre2 rw, 0 global IrqEnPA(3) rw, 0 global IrqPriority(3) r, 1 global
2
1
IrqUartTx rc1, 0 global
0
IrqUartRx rc1, 0 global IrqPA(0) rc1, 0 global
h0040
RegIrqMid
IrqPA(5) rc1, 0 global IrqPA(7) rc1, 0 global IrqEnAc rw, 0 global IrqPA(6) rc1, 0 global IrqEnPre1 rw, 0 global IrqEnPA(5) rw, 0 global IrqEnPA(7) rw, 0 global IrqPriority(7) r, 1 global IrqEnPA(6) rw, 0 global IrqPriority(6) r, 1 global IrqEnCntB rw, 0 global IrqPriority(5) r, 1 global IrqCntB rc1, 0 global
IrqPA(4) rc1, 0 global IrqCntD rc1, 0 global IrqEnCntA rw, 0 global IrqEnPA(4) rw, 0 global IrqEnCntD rw, 0 global IrqPriority(4) r, 1 global
IrqVld rc1, 0 global IrqPA(2) rc1, 0 global
IrqPA(1) rc1, 0 global
h0041
RegIrqLow
h0042
RegIrqEnHig
IrqEnUartTx rw, 0 global IrqEnVld rw, 0 global IrqEnPA(2) rw, 0 global IrqPriority(2) r, 1 global IrqHig r, 0 global IrqPriority(1) r, 1 global IrqMid r, 0 global IrqEnPA(1) rw, 0 global
IrqEnUartRx rw, 0 global IrqEnPA(0) rw, 0 global
h0043
RegIrqEnMid
h0044
RegIrqEnLow
h0045
RegIrqPriority
IrqPriority(0) r, 1 global IrqLow r, 0 global
h0046
RegIrqIrq
h0047
Table 6.10:
Interrupts control registers
6.11
USRT
7 6 5 4 3 2 1 0
UsrtSin rw, 1 global UsrtScl rw, 1 global UsrtWaitS0 r, 0 global UsrtEnWaitCond1 rw, 0 global UsrtEnWaitS0 rw, 0 global UsrtEnable rw, 0 global UsrtData r UsrtEdgeScl r, 0 global
Name Address
RegUsrtSin
h0048
RegUsrtScl
h0049
RegUsrtCtrl
h004A
RegUsrtData
h004D
RegUsrtEdgeScl
h004E
Table 6.11:
USRT control registers
13
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
6.12
UART
7
UartEcho rw, 0 global SelXtal rw, 0 global UartTx(7) rw, 0 global
Name Address
RegUartCtrl
6
UartEnRx rw, 0 global UartWakeup rw, 0 global UartTx(6) rw, 0 global
5
UartEnTx rw, 0 global UartRCSel(2) rw, 0 global UartTx(5) rw, 0 global
4
UartXRx rw, 0 global UartRCSel(1) rw, 0 global UartTx(4) rw, 0 global
3
UartXTx rw, 0 global UartRCSel(0) rw, 0 global UartTx(3) rw, 0 global
2
UartBR(2) rw, 1 global UartPM rw, 0 global UartTx(2) rw, 0 global
1
UartBR(1) rw, 0 global UartPE rw, 0 global UartTx(1) rw, 0 global UartTxBusy r, 0 global
0
UartBR(0) rw, 1 global UartWL rw, 1 global UartTx(0) rw, 0 global UartTxFull r, 0 global UartRx(0) r UartRxFull r
h0050
RegUartCmd
h0051
RegUartTx
h0052
RegUartTxSta
h0053
RegUartRx UartRx(7) r UartRx(6) r UartRx(5) r UartRxSErr r UartRx(4) r UartRxPErr r UartRx(3) r UartRxFErr r UartRx(2) r UartRxOErr c
UartRx(1) r UartRxBusy r
h0054
RegUartRxSta
h0055
Table 6.12:
UART control registers
6.13
Counters
7
CounterA(7) rw CounterB(7) rw RegCntC CounterC(7) rw CounterD(7) rw CntDSel(1) rw rw CapSel(1) rw, 0 global
Name Address
RegCntA
6
CounterA(6) rw CounterB(6) rw CounterC(6) rw CounterD(6) rw CntDSel(0) rw rw CapSel(0) rw, 0 global
5
CounterA(5) rw CounterB(5) rw CounterC(5) rw CounterD(5) rw CntCSel(1) rw rw CapFunc(1) rw, 0 global
4
CounterA(4) rw CounterB(4) rw CounterC(4) rw CounterD(4) rw CntCSel(0) rw rw CapFunc(0) rw, 0 global
3
CounterA(3) rw CounterB(3) rw CounterC(3) rw CounterD(3) rw CntBSel(1) rw CascadeCD rw rw CntDEnable rw, 0 global
2
CounterA(2) rw CounterB(2) rw CounterC(2) rw CounterD(2) rw CntBSel(0) rw CascadeAB rw rw CntCEnable rw, 0 global
1
CounterA(1) rw CounterB(1) rw CounterC(1) rw CounterD(1) rw CntASel(1) rw CntPWM1 rw, 0 global rw CntBEnable rw, 0 global
0
CounterA(0) rw CounterB(0) rw CounterC(0) rw CounterD(0) rw CntASel(0) rw CntPWM0 rw, 0 global rw CntAEnable rw, 0 global
h0058
RegCntB
h0059 h005A
RegCntD
h005B
RegCntCtrlCk
h005C
RegCntConfig1
CntDDownUp CntCDownUp CntBDownUp CntADownUp
h005D
RegCntConfig2
PWM1Size(1) PWM1Size(0) PWM0Size(1) PWM0Size(0)
h005E
RegCntOn
h005F
Table 6.13:
Counters control registers
14
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
6.14
Acquisition chain
7
AdcOutL(7) r AdcOutM(7) r Start r0w, 0 global rw, 1 global Fin(1) rw, 0 global Pga1Gain rw, 0 global
Name Address
RegAcOutLsb
6
AdcOutL(6) r AdcOutM(6) r NelConv(1) rw, 0 global rw, 1 global Fin(0) rw, 0 global Pga3Gain(6) rw, 0 global Pga3Off(6) rw, 0 global
5
AdcOutL(5) r AdcOutM(5) r NelConv(0) rw, 1 global IbAmpPga(1) rw, 1 global Pga2Gain(1) rw, 0 global Pga3Gain(5) rw, 0 global Pga3Off(5) rw, 0 global AMux(4) rw, 0 global
4
AdcOutL(4) r AdcOutM(4) r OSR(2) rw, 0 global IbAmpPga(0) rw, 1 global Pga2Gain(0) rw, 0 global Pga3Gain(4) rw, 0 global Pga3Off(4) rw, 0 global AMux(3) rw, 0 global
3
AdcOutL(3) r AdcOutM(3) r OSR(1) rw, 1 global Enable(3) rw, 0 global Pga2Off(3) rw, 0 global Pga3Gain(3) rw, 1 global Pga3Off(3) rw, 0 global AMux(2) rw, 0 global
2
AdcOutL(2) r AdcOutM(2) r OSR(0) rw, 0 global Enable(2) rw, 0 global Pga2Off(2) rw, 0 global Pga3Gain(2) rw, 1 global Pga3Off(2) rw, 0 global AMux(1) rw, 0 global
1
AdcOutL(1) r AdcOutM(1) r Cont rw, 0 global Enable(1) rw, 0 global Pga2Off(1) rw, 0 global Pga3Gain(1) rw, 0 global Pga3Off(1) rw, 0 global AMux(0) rw, 0 global
0
AdcOutL(0) r AdcOutM(0) r
h0060
RegAcOutMsb
h0061
RegAcCfg0
h0062
RegAcCfg1
IbAmpADC(1) IbAmpAdc(0)
Enable(0) rw, 1 global Pga2Off(0) rw, 0 global Pga3Gain(0) rw, 0 global Pga3Off(0) rw, 0 global VMux rw, 0 global
h0063
RegAcCfg2
h0064
RegAcCfg3
h0065
RegAcCfg4
h0066
RegAcCfg5 Busy r, 0 global
Def wr0
h0067
Table 6.14:
Acquisition chain control registers
6.15
Vmult and Vld registers
7 6 5 4 3 2
Enable VldMult rw, 0 cold rw, 0 global VldTune(2) rw, 0 cold VldIrq r, 0 global
Name Address
RegVmultCfg0
1
Fin(1) rw, 0 global VldTune(1) rw, 0 cold VldValid r, 0 global
0
Fin(0) rw, 0 global VldTune(0) rw, 0 cold VldEn rw, 0 global
h007C
RegVldCtrl
h007E
RegVldStat
h007F
Table 6.15:
Vmult and Vld control registers
15
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
7 Peripherals
The XE88LC01 includes usual microcontroller peripherals and some other blocks more specific to low-voltage or mixed-signal operation. They are 3 parallel ports, one input port (A), one IO and analog port (B) with analog switching capabilities and one general purpose IO port (C). A watchdog is available, connected to a prescaler. Four 8-bit counters, with capture, PWM and chaining capabilities are available. The UART can handle transmission speeds as high as 115kbaud. Low-power low-voltage blocks include a voltage level detector, two oscillators (one internal 0.1-2 MHz RC oscillator and a 32 kHz crystal oscillator) and a specific regulation scheme that largely uncouples current requirement from external power supply (usual CMOS ASICs require much more current at 5.5 V than they need at 2.4 V. This is not the case for the XE88LC01). Analog blocks (ZoomingADC (acquisition path)) are defined below. All these blocks operate on 2.4 - 5.5 V power supply range.
7.1 Counters
* * * * * 4 8-bit counters Daisy chain on 16 bits PWM on 8-16 bits Capture - compare on 16 bits Events and interrupts generation
7.2 Prescaler
* Interrupt generated with 1 second period for ultra low power hibernation mode
7.3 Watchdog
* 2 seconds watchdog
7.4 UART
* * * * * * * * * * full duplex operation with buffered receiver and transmitter. Internal baudrate generator with programmable baudrate (300 - 115000 bauds). 7 or 8 bits word length. even, odd, or no-parity bit generation and detection 1 stop bit error receive detection : Start, Parity, Frame and Overrun receiver echo mode 2 interrupts (receive full and transmit empty) enable receive and/or transmit invert pad Rx and/or Tx
16
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
7.5 Xtal clock
The Xtal Oscillator operates with an external crystal of 32'768 Hz.
symbol
f_clk32k st_x32k duty_clk32k fstab_1
description
nominal frequency oscillator start-up time duty cycle on the digital output relative frequency deviation from nominal, for a crystal with CL=8.2 pF and temperature between -40 and +85C
min
typ
32768 1 50
max
2 70 +300
unit
Hz s % ppm
comments
for full precision
30 -100
not included: crystal frequency tolerance and aging crystal frequency - temperature dependence
Table 7.1: Note:
Xtal oscillator specifications. Board layout recommendations for safer crystal oscillation and lower current consumption: Keep lines xtal_in and xtal_out short and insert a VSS line between them. Connect package of the crystal to VSS. No noisy or digital lines near xtal_in and xtal_out. Insert guards at VSS where needed.
7.6 RC oscillator
The RC Oscillator is always turned on at power-on reset and can be turned off after the optional Xtal oscillator has been started. The RC oscillator has two frequency ranges: sub-MHz (100KHz to 1MHz) and above-MHz (1MHz to max MCU frequency). Inside a range, the frequency can be tuned by software for coarse and fine adjustment.
Note:
No external component is required for the RC oscillator. The RC oscillator can be in 3 modes. In mode 1(RC on), the RC oscillator and its bias are on. In mode 2 (RC ready), the RC oscillator is off and the bias is on. In mode 3 (RC off), the RC oscillator and the bias are off. RC ready mode is a compromise between power consumption and start-up time.
Figure 7.1:
RC frequencies programming example for low range (typical values)
17
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
symbol
Fst range mult[3:0] tune[5:0] Tst Ost Twu Owu jit
description
frequency at start-up range selection coarse tuning range fine tuning range fine tuning step start-up time overshoot at start-up wakeup time overshoot at wakeup jitter rms
min
50 1 1 0.65
typ
80
max
110 10 16 1.5
unit
kHz
comments
multiplies Fst 4 bits, multiplies Fst * range 6 bits, multiplies Fst * range * mult
1.4 30 3 2
2 50 50 5 50
% s % s %
o
bias current is off (RC off) bias current is off (RC off) bias current is on (RC ready) bias current is on (RC ready)
/oo
Table 7.2:
RC specifications
7.7 Parallel IO ports
* * * 8 bit input port A with interrupt, reset and event generation. 8 bit input-output-analog port B with analog switching capabilities. 8 bit input-output port C.
sym
description
Port A: low threshold limit Port A: high threshold limit output drop when sinking 1 mA output drop when sourcing 1 mA Port A: low threshold limit Port A: high threshold limit output drop when sinking 1 mA output drop when sinking 8 mA output drop when sourcing 1 mA output drop when sourcing 8 mA Port A: low threshold limit Port A: high threshold limit output drop when sinking 1 mA output drop when sinking 8 mA output drop when sourcing 1 mA output drop when sourcing 8 mA pull-up, pull-down resistor
condition
Vbat = 1.2 V
min
typ
max
unit
V V V V V V V V V V V V V V V V kohm
Comments
0.4 0.4 1 1.5
Vbat = 2.4 V
0.4 0.4 2 3
Vbat = 5.0 V
0.4 0.4 150
50
Table 7.3:
IO pins performances
18
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
7.8 Voltage level detector
* * Can be switched off, on or simultaneously with CPU activities Generates an interrupt if power supply is below a pre-determined level
The Voltage Level Detector monitors the state of the system battery. It returns a logical high value (an interrupt) in the status register if the supplied voltage drops below the user defined level.
symbol description min
Note 1
typ
max
unit
comments
trimming values: VldRange 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Note 2 Note 2 VldTune 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111
Vth
Threshold voltage
1.53 1.44 1.36 1.29 1.22 1.16 1.11 1.06 3.06 2.88 2.72 2.57 2.44 2.33 2.22 2.13 2.0 875 2.5 1350
V
TEOM TPW
duration of measurement Minimum pulse width detected
ms us
Table 7.4: Note:
Voltage level detector operation 1) Absolute precision of the threshold voltage is 10%. 2) This timing is respected in case the internal RC or crystal oscillators are selected. Refer to the clock block documentation in case the external clock is used.
19
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
8 ZoomingADC
The fully differential acquisition chain is formed of a programmable gain (0.5 - 1000) and offset amplifier and a programmable speed and resolution ADC (example: 12 bits at 4 kHz, 16 bits at 1 kHz). It can handle inputs with very low full scale signal and large offsets. AC_R(0) AC_R(1) AC_R(2) AC_R(3) AC_A(0) AC_A(1) AC_A(2) AC_A(3) AC_A(4) AC_A(5) AC_A(6) AC_A(7) reference selection
ADC gain1 input selection gain2 offset2 gain3 offset3 mode output code
Figure 8.1:
Acquisition channel block diagram Input selection is made from 1 of 4 differential pairs or 1 of seven single signal versus AC_A(0). Reference is chosen from the 2 differential references. Acquisition path offset can be suppressed by inverting input polarity. The gain of each amplifier is programmed individually. Each amplifier is powered on and off on command to minimize the total current requirement. All blocks can be set to low frequency operation and lower their current requirement by a factor 2 or 4. The ADC can run continuously (end of conversion signalled by an interrupt, event or by pooling the ready bit), or it can be started on request.
8.1 PGA 1
symbol
GD1 GD_preci GD_TC fs Zin1 Zin1p VN1
description
PGA1 Signal Gain Precision on gain settings Temperature dependency of gain settings input sampling frequency Input impedance Input impedance for gain 1 Input referred noise
min
1 -5 -5 150 1500
typ
max
10 +5 +5 512
unit
% ppm/C kHz k k nV/ sqrt(Hz)
Comments
GD1 = 1 or 10
1 1 2
28.6
Table 8.1: Note:
PGA1 Performances 1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs = 128 kHz. 2) Input referred rms noise is 205 uV per input sample with gain = 1, 20.5 uV with gain = 10. This corresponds to 28.6 nV/sqrt(Hz) for fs = 512 kHz and gain = 10.
20
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
8.2 PGA2
sym
GD2 GDoff2 GDoff2_step GD_preci GD_TC fs Zin2 VN2
description
PGA2 Signal Gain PGA2 Offset Gain GDoff2(code+1) - GDoff2(code) Precision on gain settings Temperature dependency of gain settings Input sampling frequency Input impedance Input referred noise
min
1 -1 0.18 -5 -5 150
typ
max
10 1 0.22 +5 +5 512
unit
FS % ppm/C kHz k nV/ sqrt(Hz)
Comments
GD2 = 1, 2, 5 or 10
0.2
valid for GD2 and GDoff2
1 2
47.5
Table 8.2: Note:
PGA2 Performances 1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs = 128 kHz. 2) Input referred rms noise is 340 uV per input sample with gain = 1, 34 uV with gain = 10.This corresponds to 47.5 nV/sqrt(Hz) for fs = 512 kHz and gain = 10.
8.3 PGA3
sym
GD3 GDoff3 GD3_step GDoff3_step GD_preci GD_TC fs Zin3 VN3
description
PGA3 Signal Gain PGA3 Offset Gain GD3(code+1) - GD3(code) GDoff2(code+1) - GDoff2(code) Precision on gain settings Temperature dependency of gain settings Input sampling frequency Input impedance Input referred noise
min
0 -5 0.075 0.075 -5 -5
typ
max
10 5 0.085 0.085 +5 +5 512
unit
FS % ppm/C kHz k
Comments
0.08 0.08
valid for GD3 and GDoff3
150 51.0
1 2
nV/ sqrt(Hz)
Table 8.3: Note:
PGA3 Performances 1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs = 128 kHz. 2) Input referred rms noise is 365 uV per imput sample with gain = 1, 36.5 uV with gain = 10. This corresponds to 51.0 nV/sqrt(Hz) for fs = 512 kHz.
21
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
8.4 Analog to digital converter (ADC)
The whole analog to digital conversion sequence is basically made of an initialisation, a set of Nelconv elementary incremental conversions and finally a termination phase(NumCONV is set by 2 bits on RegACCfg0). The result is a mean of the results of the elementary conversions.
input sample
12
smax 1 2
smax
12
smax
START conversion index
1st elementary conversion 1
2nd elementary conversion 2
elementary conversion NumConv-1
elementary conversion NumConv
END
Figure 8.2:
Conversion sequence. smax is the oversampling rate.
Note: NumCONV elementary conversions are performed, each elementary conversion being made of smax input samples. NumCONV = 2NELCONV smax = 8*2OSR During the elementary conversions, the operation of the converter is the same as in a sigma delta modulator. During one conversion sequence, the elementary conversions are alternatively performed with direct and crossed PGA-ADC differential inputs, so that when two elementary conversions or more are performed, the offset of the converter is cancelled.
Some additional clock cycles (NINIT+NEND) clock cycles are used to initiate and terminate the conversion properly.
8.5 ADC performances
sym
VINR Resol NResol DNL INL fs smax NUMCONV Ninit Nend
description
Input range Resolution Numerical resolution Differential non-linearity Integral non-linearity sampling frequency Oversampling Ratio Number of elementary conversions in incremental mode Number of periods for incremental conversion initialization Number of periods for incremental conversion termination
min
-0.5 6 -0.1 -3 10 8 1
typ
max
0.5 16 16 0.1 2 512 1024 8 5 5
unit
Vref bits bits LSB LSB kHz -
Comments
3 LSB at 16 bits 2, LSB at 16 bits 1 1
Table 8.4: Note: Note:
ADC Performances 1) Only powers of 2 2) INL is defined as the deviation of the DC transfer curve from the best fit straight line. This specifi-
22
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
cation holds over 100% of the full scale. 3) NResol is the maximal readable resolution of the digital filter.
8.6
resolution
6 8 12 13 16 16 16
conditions
oversampling per convertion = 8 1 conversion (no offset rejection) oversampling per convertion = 16 1 conversion (no offset rejection) oversampling per convertion = 64 1 conversion (no offset rejection) oversampling per convertion = 64 2 convertions (offset rejection) oversampling per convertion = 256 1 convertion (no offset rejection) oversampling per convertion = 256 2 convertions (offset rejection) oversampling per convertion = 1024 8 convertions (offset rejection)
input frequency. convertion time. output frequency.
512 kHz 512 kHz 512 kHz 512 kHz 512 kHz 512 kHz 512 kHz 40 us 50 us 150 us 275 us 500 us 1 ms 16.5 ms 25 kHz 20 kHz 6.7 kHz 3.6 kHz 2 kHz 1 kHz 60 Hz
Table 8.5:
ADC performances examples
8.7 Linearity
To quantify linearity errors, Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) were measured for the ADC alone and for gains of 1, 5, 10, 20, 100, 1000, and a resolution of 12 bits and 16 bits. INL is defined as the deviation (in LSB) of the DC transfer curve of each individual code from the best-fit straight line. This specification holds over the full scale. DNL is defined as the difference (in LSB) between the ideal (1 LSB) and measured code transitions for successive codes. INL and DNL are specified after gain and offset errors have been removed.
8.8 Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) for 12-bit resolution
12 bits - ADC converter (No PGA; ADC only) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
12 bits - ADC converter (No PGA; ADC only) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
1.0
0.50
Integral Non-Linearity (INL) [LSB]
0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 0 500 1000 1500 2000 2500
Differential Non-L inearity (DNL [L B ) S]
0.40 0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30 0 500 1000 1500 2000 2500
VIN [mV]
VIN [mV]
Figure 8.3:
NO GAIN (ONLY ADC), 12 bit ADC setting
23
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
12 bits - ADC converter (GDtot = 1) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
12 bits - ADC converter (GDtot = 1) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
2.0
0.50
Integral Non-Linearity (INL) [LSB]
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 0 500 1000 1500 2000 2500
INL
Differential Non-Linearity (DNL) [LSB]
0.40 0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30 0 500 1000 1500 2000 2500
VIN [mV]
VIN [mV]
Figure 8.4:
GAIN=1, 12 bit ADC setting
12 bits - ADC converter (GDtot = 5) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
12 bits - ADC c onve rte r (GDtot = 5) (ve rsion v5a )
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
1.0
0.50
Differential Non-Linearity (DNL) [LSB]
Integral Non-Linearity (INL) [LSB]
0.40 0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30
0.5 0.0 -0.5 -1.0 -1.5 0 100 200 300 400 500
0
100
200
300
400
500
VIN [mV]
VIN [mV]
Figure 8.5:
GAIN=5, 12 bit ADC setting
12 bits - ADC converter (GDtot = 10) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
12 bits - ADC converter (GDtot = 10) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
2.0
0.50
Integral Non-Linearity (INL) [LSB]
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 0 50 100 150 200 250
Differential Non-Linearity (DNL) [LSB]
0.40 0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30 -0.40 -0.50 0 50 100 150 200 250
VIN [mV]
VIN [mV]
Figure 8.6:
GAIN=10, 12 bit ADC setting
24
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
12 bits - ADC converter (GDtot = 20) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
12 bits - ADC converter (GDtot = 20) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
0.8
0.60
Integral Non-Linearity (INL) [LSB]
0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 0 20 40 60 80 100 120
Differential Non-Linearity (DNL) [LSB]
0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 0 20 40 60 80 100 120
VIN [mV]
VIN [mV]
Figure 8.7:
GAIN=20, 12 bit ADC setting
12 bits - ADC converter (GDtot = 100) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
12 bits - ADC converter (GDtot = 100) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
4.0
1.00
Integral Non-Linearity (INL) [LSB]
3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 0 5 10 15 20 25
Differential Non-Linearity (DNL) [LSB]
0.50 0.00 -0.50 -1.00 -1.50 0 5 10 15 20 25
VIN [mV]
VIN [mV]
Figure 8.8:
GAIN=100, 12 bit ADC setting
12 bits - ADC converter (GDtot = 1000) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
12 bits - ADC converter (GDtot = 1000) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
6.0
2.0
Differential Non-L inearity (DNL [L B ) S]
0 5 10 15 20 25
Integral Non-Linearity (INL) [LSB]
4.0 2.0 0.0 -2.0 -4.0 -6.0
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 0 5 10 15 20 25
10*VIN [mV]
10*V IN [mV]
Figure 8.9:
GAIN=1000, 12 bit ADC setting
25
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
8.9 Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) for 16-bit resolution
16 bits - ADC converter (No PGA; ADC only) (ve rsion v5a )
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
16 bits - ADC c onve rter (No PGA; ADC only) (ve rsion v5a )
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
3 2 1 0 -1 -2 -3 0 500 1000 1500 2000 2500
0.10
Differential Non-Linearity (DNL) [LSB]
Integral Non-Linearity (INL) [LSB]
0.05 0.00 -0.05 -0.10 -0.15 0 500 1000 1500 2000 2500
VIN [mV]
VIN [mV]
Figure 8.10:
NO GAIN (ONLY ADC), 16 bit ADC setting
16 bits - ADC converter (GDtot = 1) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
16 bits - ADC converter (GDtot = 1) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
25.0 15.0 10.0 5.0 0.0 -5.0 -10.0 -15.0 -20.0 -25.0 0 500 1000 1500 2000 2500
0.10
Differential Non-Linearity (DNL) [LSB]
Integral Non-Linearity (INL) [LSB]
20.0
0.08 0.06 0.04 0.02 0.00 -0.02 -0.04 -0.06 -0.08 -0.10 0 500 1000 1500 2000 2500
VIN [mV]
VIN [mV]
Figure 8.11:
GAIN=1, 16 bit ADC setting
16 bits - ADC converter (GDtot = 5) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
16 bits - ADC converter (GDtot = 5) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
10.0
0.15
Differential Non-Linearity (DNL) [LSB]
0 100 200 300 400 500
Integral Non-Linearity (INL) [LSB]
5.0 0.0 -5.0 -10.0 -15.0 -20.0
0.10 0.05 0.00 -0.05 -0.10 -0.15 0 100 200 300 400 500
VIN [mV]
VIN [mV]
Figure 8.12:
GAIN=5, 16 bit ADC setting
26
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
16 bits - ADC converter (GDtot = 10) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
16 bits - ADC converter (GDtot = 10) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
30 20 10 0 -10 -20 -30 0 50 100 150 200 250
0.25
Differential Non-Linearity (DNL) [LSB]
Integral Non-Linearity (INL) [LSB]
0.20 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 -0.25 0 50 100 150 200 250
VIN [mV]
VIN [mV]
Figure 8.13:
GAIN=10, 16 bit ADC setting
16 bits - ADC converter (GDtot = 20) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
16 bits - ADC converter (GDtot = 20) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
10
0.6
Integral Non-Linearity (INL) [LSB]
8 6 4 2 0 -2 -4 -6 -8 -10 0 20 40 60 80 100 120
Differential Non-Linearity (DNL) [LSB]
0.4 0.2 0.0 -0.2 -0.4 -0.6 0 20 40 60 80 100 120
VIN [mV]
VIN [mV]
Figure 8.14:
GAIN=20, 16 bit ADC setting
16 bits - ADC converter (GDtot = 100) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
16 bits - ADC converter (GDtot = 100) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
40
0.8
Differential Non-Linearity (DNL) [LSB]
0 5 10 15 20 25
Integral Non-Linearity (INL) [LSB]
30 20 10 0 -10 -20 -30 -40
0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 0 5 10 15 20 25
VIN [mV]
VIN [mV]
Figure 8.15:
GAIN=100, 16 bit ADC setting
27
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
16 bits - ADC converter (GDtot = 1000) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
16 bits - ADC converter (GDtot = 1000) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2 fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V N sweep = 1201; average on 4 samples
80
2.0
Integral Non-Linearity (INL) [LSB]
60 40 20 0 -20 -40 -60 -80 0 5 10 15 20 25
Differential Non-Linearity (DNL) [LSB]
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 0 5 10 15 20 25
10*VIN [mV]
10*VIN [mV]
Figure 8.16:
GAIN=1000, 16 bit ADC setting
The gain settings of each PGA stage for the plots of above figure are those of the table below.
PGA Gain GDTOT (V/V)
1 5 10 20 100 1000
PGA1 Gain GD1 (V/V)
1 1 10 10 10 10
PGA2 Gain GD2 (V/V)
bypassed 5 bypassed 2 10 10
PGA3 Gain GD3 (V/V)
bypassed bypassed bypassed bypassed bypassed 10
Table 8.6: Table 8.7:
Individual PGA gains for INL & DNL measurements
8.10 Noise
Ideally, a constant input voltage VIN should result in a constant output code. However, because of circuit noise, the output code may vary for a fixed input voltage. The figure shows the distribution for the ADC alone (PGA1, 2, and 3 bypassed) and of several configurations of the PGAs. Quantization noise is dominant in this case of ADC only, and, thus, the ADC thermal noise is negligible. One has to considere two points when computing final noise of the acquisition chain: * this is a type of amplifier (switched-cap with constant capacitive load) that maintains its output noise when changing the gain. Therefore input refered noise is lowered when the gain of an amplifier is increased. * the ADC is oversampled, and the number of samples taken lowers the thermal noise
Total input refered noise can be computed using the following equation: V n, out1 Vn, out2 V n, out3 ----------------- + --------------------------------- + ----------------------------------------------------- gain1 gain1 gain2 gain1 gain2 gain3 2 V n, in = ----------------------------------------------------------------------------------------------------------------------------------------------numconv smax
2 2 2
28
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
Where Vn,outx is the rms output noise of amplifier x.
Amplifier
PGA1 PGA2 PGA3
Symbol
Vn,out1 Vn,out2 Vn,out3
Typical output noise per over-sample
205 340 365
Unit
uVrms uVrms uVrms
Typical output noise of ZoomingADC preamplifiers
ADC only
PGA1: 1 PGA2: 10 PGA3: off
PGA1: off PGA2: 1 PGA3: 10
PGA1: 10 PGA2: 10 PGA3: off
PGA1: 1 PGA2: 10 PGA3: 10
Figure 8.17:
Noise measured at the output of the ZoomingADC As one can see on the figures above, increase the gain of the first amplifier lowers the output noise for constant global gain. It also lowers sensitivity to temperature drift as offset is better compensated on first amplifier.
8.11 Gain Error and Offset Error
Gain error is defined as the amount of deviation between the ideal transfer function and the measured transfer function (with the offset error removed). The left figure shows gain error vs. temperature for different PGA gains. The curves are expressed in % of Full-Scale Range (FSR) normalized to 25C.
29
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
Offset error is defined as the output code error for a zero volt input (ideally, output code = 0). The measured offset errors vs. temperature curves for different PGA gains are depicted in the right figure below. The output offset error, expressed in (LSB), is normalized to 25C.
0.2
100 80 60 40 20 0 -20 -40 1 5 20 100
0.1 0.0 -0.1 -0.2 -0.3 -0.4 -50 -25 0 25 50 75 100 1 5 20 100
Output Offset Error [LSB]
Gain Error [% of FSR]
-50
-25
0
25
50
75
100
Temperature [C]
Temperature [C]
Figure 8.18:
Gain and offset error vs temperature for several gains, normalized to 25C, offset cancellation disabled. When the offset cancellation is enabled, the offset remains below the LSB in all temperature situations.
8.12 Power Consumption
Left figure below plots the variation of quiescent current consumption with supply voltage VDD, as well as the distribution between the 3 PGA stages and the ADC. As shown in the right figure, quiescent current consumption is not greatly affected by sampling frequency. It can be seen that the quiescent current varies by about 20% between 100kHz and 2MHz. Quiescent current consumption vs. temperature is shown in the second set of figures, showing a relative increase of nearly 40% between -45 and +85C.
800 700 Quiescent Current - IQ [ A] 600 500
800 750 700 650 600 550 500
2.5 3.0 3.5 4.0 4.5 5.0 5.5
PGA1, 2 & 3
Quiescent Current - IQ [ A]
Sampling Frequency fS : 500kHz
250kHz 62.5kHz
PGA1 & 2 only
400
PGA1 only
300 200
No PGAs, ADC only
100
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Supply Voltage - VDDA [V]
Supply Voltage - VDDA [V]
Figure 8.19:
Quiescent current versus supply voltage for different gains and clock speed (not using the PGA and ADC low power modes)
Supply
VDD = 5V VDD = 3V
ADC
250 190
PGA1
165 150
PGA2
130 120
PGA3
175 160
TOTAL
720 620
Unit
A A
Table 8.8:
Typical quiescent current distributions in acquisition chain (n = 16 bits, fS = 500kHz)
30
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
Relative Quiescent Current Change IQ / IQ,25C [%]
-50 -25 0 25 50 75 100 125
900 Quiescent Current - IQ [ A] 850 800 750 700 650 600 550 500 Temperature [C]
20 15 10 5 0 -5 -10 -15 -20 -25
-50 -25 0 25 50 75 100 125
Temperature [C]
Figure 8.20:
Absolute and (b) relative change in quiescent current consumption vs. temperature
Relative Quiescent Current Change IQ / IQ,2MHz [%]
0 500 1000 1500 2000 2500 3000 3500
850 Quiescent Current - IQ [ A] 800 750 700 650 600 550 500 Frequency - fRC [kHz]
15 10 5 0 -5 -10 -15 -20
0 500 1000 1500 2000 2500 3000 3500
Frequency - fRC [kHz]
Figure 8.21:
Absolute and (b) relative change in quiescent current consumption vs. clock speed
8.13 Power Supply Rejection Ratio
Figure below shows power supply rejection ratio (PSRR) at 3V and 5V supply voltage, and for various PGA gains. PSRR is defined as the ratio (in dB) of voltage supply change (in V) to the change in the converter output (in V). PSRR depends on both PGA gain and supply voltage VDD.
31
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
105 100 95
VDD=3V VDD=5V
PSRR [dB]
90 85 80 75 70 65 60 1 5 10 20 100
PGA Gain [V/V]
Figure 8.22:
Power supply rejection ratio (PSRR)
Supply VDD = 5V VDD = 3V
GAIN = 1 79 72
GAIN =5 78 79
GAIN = 10 100 90
GAIN = 20 99 90
GAIN =100 97 86
Unit dB dB
Table 8.9:
PSRR (n = 16 bits, VIN = VREF = 2.5V, fS = 500kHz)
8.14 Frequency Response
The incremental ADC of the XE88LC01 is an over-sampled converter with two main blocks: an analog modulator and a low-pass digital filter. The main function of the digital filter is to remove the quantization noise introduced by the modulator. As shown below, this filter determines the frequency response of the transfer function between the output of the ADC and the analog input VIN. Notice that the frequency axes are normalized to one elementary conversion period OSR/fS. The plots below also show that the frequency response changes with the number of elementary conversions NELCONV performed. In particular, notches appear for NELCONV 2. These notches occur at:
f NOTCH (i ) =
i fS OSR N ELCONV (Hz)for i = 1,2,..., ( N ELCONV - 1)
and are repeated every fS/OSR. Information on the location of these notches is particularly useful when specific frequencies must be filtered out by the acquisition system. For example, consider a 5Hz-bandwidth, 16-bit sensing system where 50Hz line rejection is needed. Using the above equation and the plots below, we set the 4th notch for NELCONV = 4 to 50Hz, i.e. 1.25fS/OSR = 50Hz. The sampling frequency is then calculated as fS = 20.48kHz for OSR = 512. Notice that this choice yields also good attenuation of 50Hz harmonics.
32
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
Normalized Magnitude [-]
Normalized Magnitude [-]
1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 Normalized Frequency - f *(OSR/fS) [-]
1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 Normalized Frequency - f *(OSR/fS) [-]
NELCONV = 1
NELCONV = 2
Normalized Magnitude [-]
Normalized Magnitude [-]
1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 Normalized Frequency - f *(OSR/fS) [-]
1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 Normalized Frequency - f *(OSR/fS) [-]
NELCONV = 4
NELCONV = 8
Figure 8.23:
Frequency response: normalized magnitude vs. frequency for different NELCONV
33
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
9 Physical description
9.1 LQFP44 package
Figure 9.1:
LQFP44 package, size in mm.
9.2 PLL-44L package
Figure 9.2:
PLL-44L package,
34
D0202-60
Data Sheet XE88LC01 Data Acquisition Microcontroller
9.3 Die form
pin 1
Figure 9.3:
XE88LC01 in die: 4.1 x 4.6 mm2
9.3.1 Bonding pads location
Coordinates start with a point near to the bottom left border (with respect to above picture). X is horizontal, Y is vertical. Pad size is 85 x 85 um.
Symbol
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Pad
PA(4) PA(5) NC PA(6) PA(7) PC(0) PC(1) PC(2) PC(3) NC PC(4) PC(5) PC(6) PC(7) PB(0) PB(1) PB(2) PB(3) PB(4) NC PB(5) PB(6) PB(7) TEST NC AC_R(3)
X um
52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 398.5 533.5 668.5 798.5 933.5 1063.5 1198.5 1328.5 1463.5 1934.1 2394.1 2854.1
Y um
4075.5 3795.5 3515.5 3235.5 2955.5 2675.5 2395.5 2115.5 1835.5 1555.5 1275.5 995.5 715.5 435.5 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6
Symbol
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Pad
AC_R(2) AC_A(7) NC AC_A(6) AC_A(5) AC_A(4) AC_A(3) AC_A(2) NC AC_A(1) AC_A(0) AC_R(1) AC_R(0) Vss Vbat NC Vreg RESET Vmult OscIn NC OscOut PA(0) PA(1) PA(2) PA(3)
X um
3314.1 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3958.4 3597.6 3332.6 3067.6 2802.6 2537.0 2007.6 1742.6 1477.6 1212.6 947.6 682.6 417.6
Y um
47.6 522.4 807.4 1092.4 1377.4 1662.4 1947.4 2232.4 2517.4 2802.4 3087.4 3372.4 3657.4 3942.4 4453.4 4453.4 4453.4 4453.4 4453.4 4453.4 4453.4 4453.4 4453.4 4453.4 4453.4 4453.4
Table 9.1:
Bonding pads location. Do not connect pads named NC. Connect Vss pad and substrate to Vss.
35
D0202-60


▲Up To Search▲   

 
Price & Availability of XE88LC01RI000

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X